

EUTOVOIVO November 8-9, 2013

3D Echo In The Assessment of Valve Morphology

- Raluca Dulgheru -CHU Liege, Belgium

Faculty Disclosure

I, Raluca Dulgheru, DO NOT HAVE a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

"All directions" journey around the heart

From Morphology to Dysfunction.....

3DE Advantages in Assessing Valve Morphology

realistic representation

multiple orientations

AORTIC VALVE

TRICUSPID VALVE

PULMONIC VALVE

quantitative analysis (less/no geometrical assumption)

infinite possibility of cut planes (better understanding of valve morphology)

improved assessment of valve dysfunction (stenosis/regurgitation)

3DE ...not always as good as it sounds!

3DE Modalities for Valve Morphology Assessment

X-plane / Multiplane (bi and triplane views)

Reference plane

Excellent frame rate

Color Doppler can be added

Multiple scanning planes no probe manipulation

3DE Modalities for Valve Morphology Assessment

X-plane / Multiplane (bi and triplane views)

Real time "narrow volume" – "**In depth view**" of the 2D image plane

Good frame rate

Best for guiding procedures

3DE Modalities for Valve Morphology Assessment

3DE Modalities for Valve Anatomy Assessment

X-plane / Multiplane (bi and triplane views)

Real time "narrow volume" – "In depth view" of the 2D image plane, best for guiding procedures

Real time "3D Zoom" –best for Valve Morphology

Full Volume – largest sector available

Stitching together multiple smaller volumes, ECG gating

Excellent trade off (good spatial and temporal resolution), largest sector

Stitching artifacts : irregular HR, breathing

3DE Mitral Valve Morphology Assessment

- 3DE Image Acquisition -

3DE Mitral Valve Morphology Assessment

3DE Mitral Valve

Off line Multiplane review/Flexi-slice

The Mitral Valve - Annulus -

NON planar, saddle shape in normal subjects

D shape when viewed from above, largest AL to PM commissures

Levine et al. Circulation 1989

The Mitral Valve - Annulus -

The Mitral Valve – Annulus size & shape -

- in secondary mitral regurgitation -

Watanabe et al. Circulation 2005

The Mitral Valve – Annulus size & shape -

- in primary mitral regurgitation Barlow's disease and FED -

Maffessanti et al. JASE 2011

The Mitral Valve – Annulus dynamics -

change in mitral annulus area between diastole and systole
 The SPHINCTER function of the mitral annulus -

~ 25% reduction in annular area with systole in normal subjects

Flachskampf et al. JASE 2000

3DE and MV Morphology - Leaflets -

- unique "en face" – Normal Mitral Valve

ANTERIOR LEAFLET

trapezoid shape
artificially divided into A1-A2-A3 scallops
1/3 of the annular circumference
in continuity with NCC of the aortic valve (intervalvular fibrosa)

POSTERIOR LEAFLET

crescentic shape
2 well defined identations
3 individual scallops (P1-P2-P3)
2/3 of the annular circumference

POSTERO-MEDIAL & ANTERO-LATERAL COMMISSURES

3DE and MV Morphology - Leaflets -

- unique "en face" view -

Rapid and confident identification of the valve lesion

Leaflet perforation

Carpentier Type I

Complex Prolapse with Flail Leaflet Barlow's Disease

Carpentier Type II

3DE and MV Morphology - Leaflets -

- unique "en face" view -

Rapid and confident identification of the valve lesion

Specific questions in Primary MR. Why move to 3D?

- Which scallop is affected?
- Are the commissures involved?
- Are there any calcifications?
- Is there lack of valve tissue? Extent?
- Is there any abnormality of the MV apparatus?
- Is there severe annular dilatation?

Surgeon's view and MPR view

Surgeon's view and MPR view

2D better than 3D

Surgeon's view, off line analysis

3D gives in one volume the dynamic relationship between MV leaflets and subvalvular apparatus

Mitral Annulus Reconstruction – no geometrical assumptions

3DE MV Morphology in SMR

LV dilation/remodeling

Papillary muscles apical/outward displacement

Tethering

Restricted systolic leaflet motion

Apical displacement of coaptation line & decreased coaptation surface

Valve dysfunction

3DE MV Morphology in SMR "surgeon's view"

Symmetric tethering

"Funnel shape" MV

Asymmetric tethering

Carpentier Type IIIb

3DE MV Morphology in MS

- unique "en face" / ventricular view Rapid and confident identification of the valve lesion

3DE MV Morphology in MS

Accurate assessment of MA area by planimetry

3D TTE biplane:

- Good alignment
- Orthogonal plane in systole at leaflet opening site
 Advantage over 2DE, better control of the cutting plane orientation

3D TTE 1/multiple beat volume or 3D zoom mode:

- off line cropping of the volume
- smallest orifice is planimetered
- some vendors allow planimetry directly on the cropped volume

US • thin cusps

Parasternal long axis: Biplane Full Volume

- Advantages -

- Improved assessment of AS severity (anatomic AVA) 3D TTE-

Still frame in mid-systole, cutting plane at the level of AV tips

- Improved assessment of AS severity (anatomic AVA) 3D TOE -

-Improved assessment of AS severity (effective AVA) -- LVOT Geometry -

3 dimensional imaging techniques say : LVOT is NOT circular !!!!

Off line planimetry of the LVOT cross section without geometrical assumptions

Khaw et al. Int J Cardiol 2009

3DE - The Tricuspid Valve

Drawbacks:

TOE:

- Image Acquisition -

Full Volume from midoesophageal 4ch view

 anterior position relative to probe

- oblique incidence of US
- thin cusps

TEE:

- retrosternal anterior position makes imaging of the lateral aspect of the valve difficult
 oblique incidence of
- US
- thin cusps

Modified Apical View focused on the RV: Full Volume

3DE - The Tricuspid Valve

- Annular Morphology-

Ton-Nu T et al. Circulation 2006

Complex oval, saddle shape

Non-planarity preserved through cardiac cycle, sphincter function

More circular and flattened in secondary TR

- Leaflets Morphology-

Leaflet thickening

Prolapse

Perforations

Vegetations

Conclusions

- Feasible and valuable in clinical practice, but needs training and experience
- For mitral and aortic valve morphology 3D TOE is preferred, especially when planning surgery
- Image quality is a trade off between sector size, temporal and spatial resolution
- Better understanding of valve dysfunction
- Helps in planning surgery
- Does not replace 2D echocardiography, but completes the study of valvular morphology