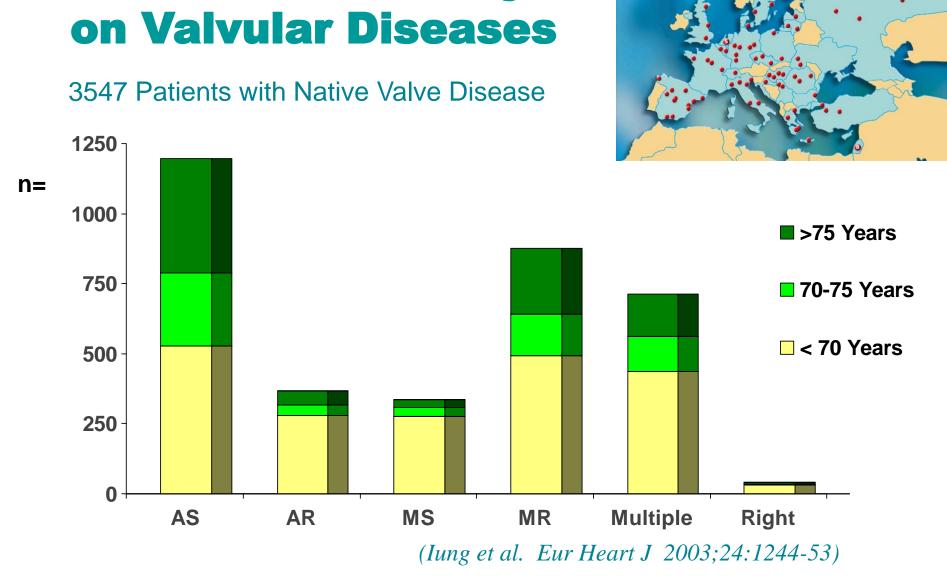


Bicuspid Aortic Valve Epidemiology

Bernard lung Bichat Hospital Paris, France

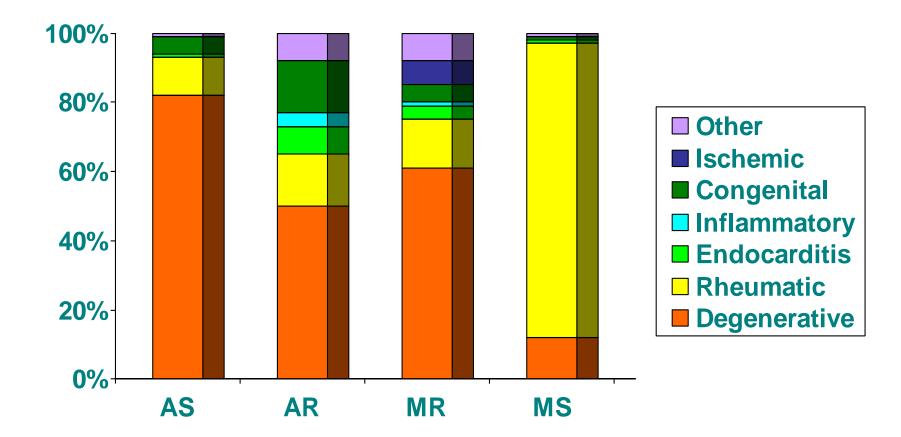

Faculty Disclosure

Bernard lung

I disclose the following financial relationships:

Consultant forr Abbott, Boehringer Ingelheim, Valtech

Paid speaker for Edwards Lifesciences



Euro Heart Survey

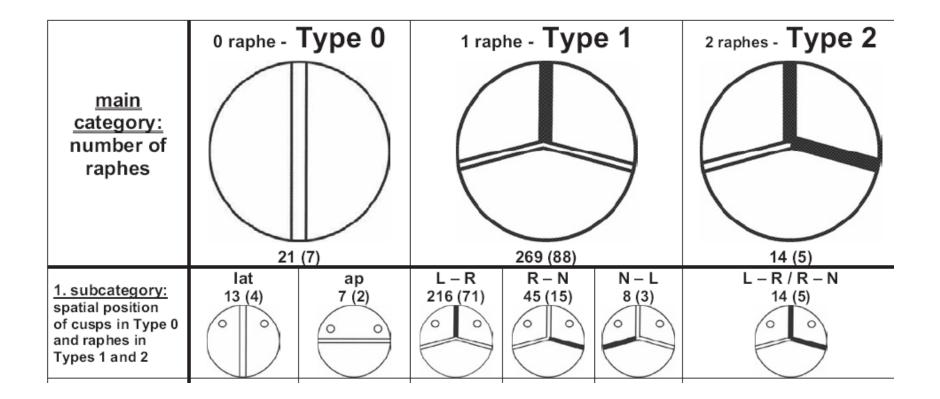
European Society of Cardiology – Euro Heart Survey

Single Native Valve Disease Etiology

European Society of Cardiology – Euro Heart Survey

Prevalence of BAV

- Systematic echocardiographic screening in children:
 - 0.6-0.8% in males
 - 0.2% in females

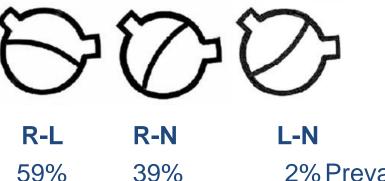

(Tutar et al. Am Heart J 2005;150:513-5) (Nistri et al. Am J Cardiol 2005:96:718-21)

- Estimations in the USA
 - Prevalence 1.4%
 - Incidence of new cases estimated at 54 800 per year in the USA

(AHA Heart Disease and Stroke Statistics--2012 Update Circulation 2012; 125:e2-e220)

Prevalence According to Anatomy

(Sievers et al. J Thorac Cardiovasc Surg 2007;133:1226-33)



Aortic Stenosis and BAV in Childhood

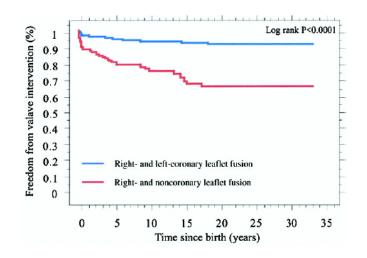
- 1135 children with bicuspid aortic valve Median age 3 years [1-18]
- 569 (50%) had isolated BAV

10%

BAV morphology and valve dysfunction

39% 2% Prevalence
26% 0% V.max 3.5 m/sec.

 Age- and sex-adjusted link between AS and valve morphology: OR 2.3 [1.6-3.6] p<0.001

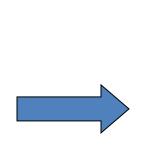


Progression of Aortic Stenosis

310 patients with BAV

 202 (65%) with R-L fusion
 108 (35%) with R-N fusion
 Mean follow-up 14±7 yrs
 Median age at end of follow-up: 16 years

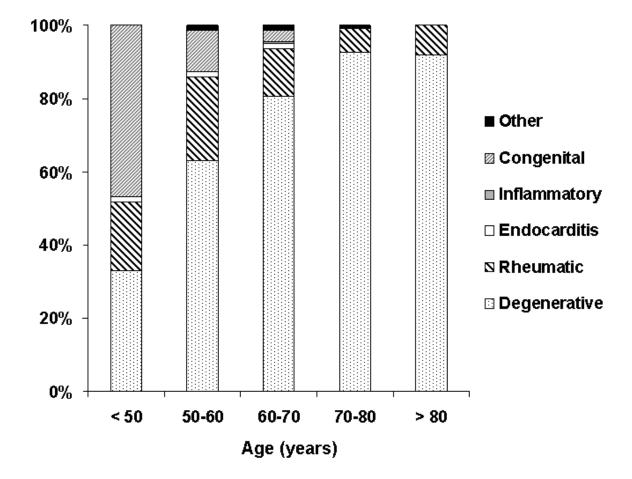
(Fernandes et al. J Am Coll Cardiol 2007;22:2211-4)





Aortic Stenosis on BAV in the Adult

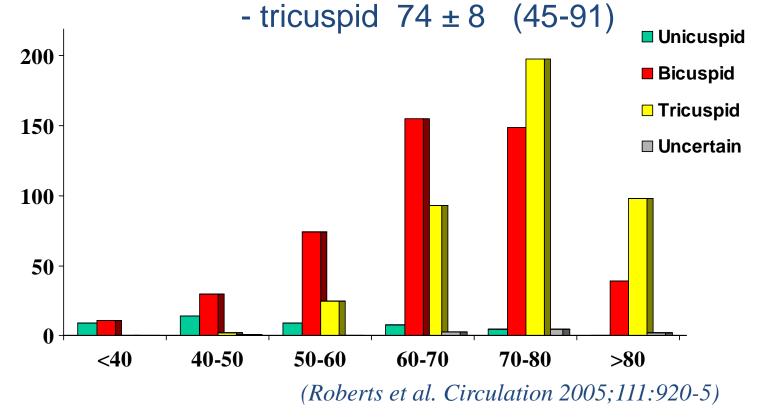
 In most cases, aortic stenosis is the consequence of a superimposed « degenerative » process


- Development of AS is also linked to cardiovascular risk factors in patients with BAV
 - Hypercholesterolemia OR 1.8 [1.1-2.8]
 - Hypertension OR 2.6 [1.1-6.6]

(Chan et al. Am J Cardiol 2001;88:690-3)

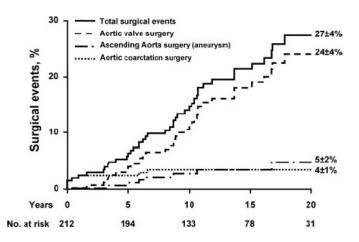
Etiologies of Aortic Stenosis

(Iung et al. Curr Prob Cardiol 2007;32: 609-61)



AS and Valve Morphology

- 932 aortic valves excised during AVR for AS (1993-2004)
- 49% had bicuspid aortic valves



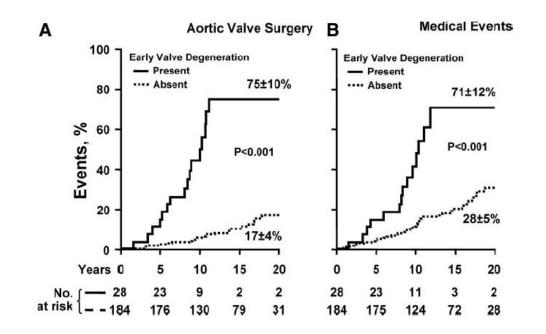
BAV and Valve Dysfunction

- Aortic valve surgery in 39 patients
 - 27 for severe AS
 - 6 for severe AR
 - 2 for severe mixed valve disease
 - 3 for moderate valve dysfunction and aortic dilatation
 - 1 for acute endocarditis
- Surgery for aortic coarctation in 8 patients
- Surgery for ascending aortic dilatation in 8 patients

(Michelena et al. Circulation 2008;117:2776-84)

AVR in Bicuspid/Tricuspid Valves

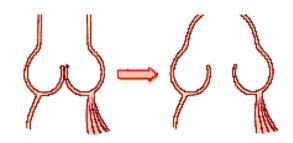
- Incidence of AVR (± CABG) in Olmsted County (1990-1999)
 - 19 / 100 000 pts/yrs for all patients
 - 1370 / 100 000 pts/yrs in patients with bicuspid aortic valves
- Age at AVR
 - 67 ± 16 yrs in patients with tricuspid aortic valves
 - 49 ± 20 yrs in patients with bicuspid aortic valves (p < 0.0001)


(Michelena et al. Circulation 2008;117:2776-84)

The Impact of Degenerative Disease

With age, valve degeneration (thickening, calcification, or mobility) was a strong independent predictor of all events

(Michelena et al. Circulation 2008;117:2776-84)



Aortic Regurgitation and BAV

 Less frequent occurrence than aortic stenosis on bicuspid valves

- Mechanisms
 - Valve prolapse
 - Dilatation of sinotubular junction
 - Endocarditis

AR and BAV

- 268 aortic valves excised during isolated AVR for AR (1993-2005)
 - 122 related to valve disease
 - 146 related to disease of ascending aorta
- 77 (29%) bicuspid aortic valves
 - 74/122 (61%) among valve-related AR
 - 59 without endocardits
 - 15 with signs of healed or active endocarditis
 - 3/146 (2%) among aorta-related AR
 (all aortic dissection)

(Roberts et al. Circulation 2006;114:422-9)

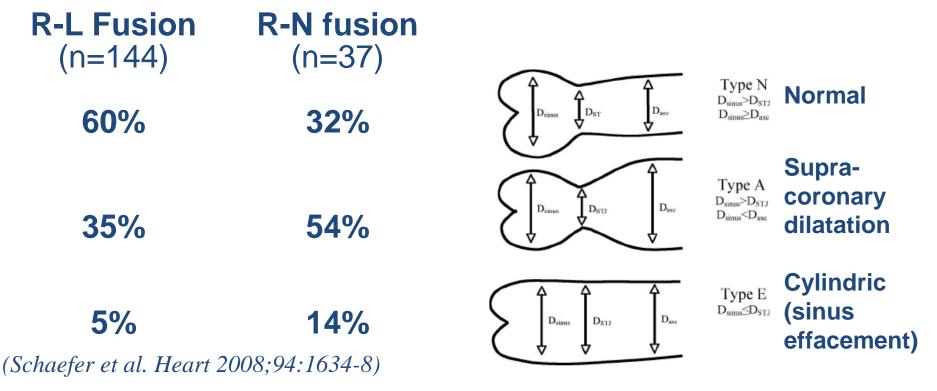
AR and BAV in Childhood

 164 children with BAV and serial echocardiographic examinations

AR ≥ moderate (%)	R-L	R-N	р
	(n=103)	(n=61)	
At first echo	11	33	0.004
At last echo	26	64	<0.001

 Progression of ≥ 1 grade of AR in 44% of patients with R-N fusion vs. 27% with R-L fusion

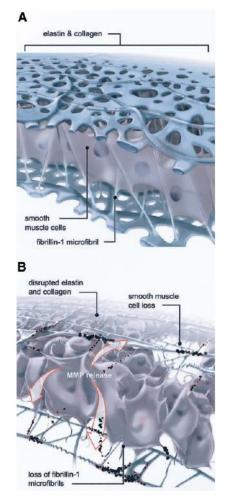
(Fernandes et al. J Am Coll Cardiol 2007;22:2211-4)



BAV and Ascending Aorta

More frequent dilatation of ascending aorta with bicuspid vs. tricuspid aortic valves independently of valve function

(Nistri et al. Heart 1999;82:19-22) (Keane et al. Circulation 2000;102suppl.:III-35-9)



EuroValve

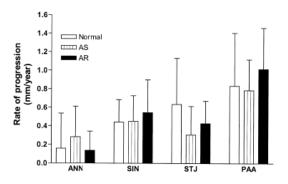
BAV and Ascending Aorta

• Histological abnormalities of the aortic wall

 Maximal aortic dilatation rate does not differ between BAV and Marfan syndrome (0.42±0.6 vs 0.49±0.5 mm/yr.)

(Detaint et al. Heart, in press)

(Fedak et al. Circulation 2002;106:900-4)



Aortic Dilatation and Valve Function

The rate of progression of ascending aorta diameters

• Does not depend on aortic valve function

(Ferencik et al. Am J Cardiol 2003;92:43-6)

Does not differ in patients with or without AVR

Progression (mm/m²/yr.)	No AVR	AVR
Valsalva sinuses	0.02±0.13	0.03±0.06
Ascending aorta	0.08 ± 0.06	0.10±0.06

(Yasuda et al. Circulation 2003;108suppl.II:II291-4)

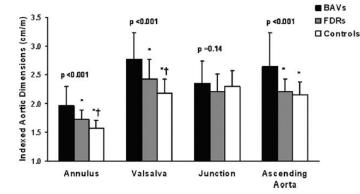
Aortic Dissection and BAV

Necropsy
 186 patients with aortic dissection
 14 (7.5%) had a bicuspid aortic valve

(Roberts et al. J Am Coll Cardiol 1991;17:712-6)

- IRAD registry
 951 patients from 18 centres (1996-2001)
 Aortic valve morphology was available in 516
 18 (3.5%) had a bicuspid aortic valve
 - 9% before 40 years
 - 1% after 40 years

(Januzzi et al. J Am Coll Cardiol 2004;43:665-9)



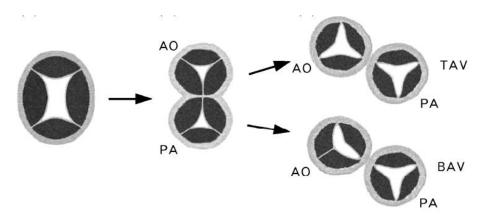
Genetic Component in BAV

- High heritability of BAV (75-89%)
 - 50 probands with BAV
 - 259 first-degree relatives: 24% with BAV

(Cripe et al. J Am coll Cardiol 2004;44:138-43)

• Prevalence of aortic root dilatation of 32% in firstdegree relatives of subjects with BAV

(Biner et al. J Am Coll Cardiol 2009;53:2288–95)



Genetic Component in BAV

 Association between mutations of NOTCH-1 gene and BAV in a family comprising 11 case of congenital heart disease (6 with BAV)

(Garg et al. Nature 2005;437:270-4)

NOTCH-1 signalling pathway is involved in the septation of the common arterial trunk

Conclusion (I)

- Bicuspid aortic valve is frequent in the population.
- It seldom causes aortic valve dysfuntion during childhood and adolescence.
- Aortic valve dysfunction occurs progressively in the adult and is most often aortic stenosis, due to superimposed degenerative valve remodelling.
- Aortic stenosis occurs more frequently and at a younger age on bicuspid than on tricuspid valve.

Conclusion (II)

- Aortic dilatation
 - is due to structural abnormalities of the aortic wall
 - follows different patterns which are linked to aortic valve morphology
 - does not depend on valve function
- Growing evidence suggests a genetic component in bicuspid aortic valve.